OYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – **STATISTICS** THIRD SEMESTER – NOVEMBER 2011 **ST 3104 - BUSINESS STATISTICS** Date : 09-11-2011 Dept. No. Max.: 100 Marks Time : 9:00 - 12:00 **SECTION A** Answer ALL questions. (10 x 2 = 20 marks)**1.** Define statistics. 2. Define mode. Give an example. 3. If S = 20 and L = 60, what is the coefficient of Range? 4. Write down the formulae for Regression coefficients X on Y and Y on X. **5.** Define correlation. **6.** Mention any two uses of Time series. 7. What is Index Series? 8. List out Methods of finding an Initial Basic Feasible Solution (IBFS). 9. Explain Assignment Problem.

10. State the various measures of dispersion.

SECTION B

Answer any FIVE questions.

11. Explain the scope and limitations of statistics.

12. Draw a Histogram and Frequency Polygon for the following data:

Marks	5-10	10-15	15-20	20-25	25-30	30-35	35-40
No. of Students	10	15	25	40	30	35	45

13. Calculate Median and Mode from the following data:

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	10	20	30	50	40	30

14. Two cricketer scored the following runs in five matches. Find who is more consistent player.

Raina	65	25	90	80	40
Yuvaraj	60	35	50	40	65

15. Construct the Price index numbers to the following data By using the method of (i) Laspeyre's (ii).Paasche's (iii). Marshall-Edgeworth (iv). Fisher's Ideal index number

	20	10		2011
Commodities	\mathbf{P}_{0}	\mathbf{Q}_{0}	P ₁	Q 1
Sugar	1	6	5	8

$(5 \times 8 = 40 \text{ marks})$

Rice	2	7	4	7
Milk	3	8	3	6
Wheat	4	9	2	3

16. Find coefficient of rank correlation between the variables X and Y.

Χ	68	64	75	50	64	80	75	40	55	64
Y	62	58	68	45	81	60	68	48	50	70

17. Fit a Straight line to the following data.

X	1	2	3	4	6	8
Y	2.4	3	3.6	4	5	6

18. Solve the following Assignment Problem.

Jobs	Machines							
JODS	M_1	M_2	M_3	M_4				
\mathbf{J}_1	14	5	8	7				
J_2	2	12	6	5				
J_3	7	8	3	9				
J_4	2	4	6	10				

SECTION C

Answer any TWO questions.

(2 x 20 =40 marks)

19. The following data relate to advertising expenditure and sales.

Advertising Expenditure(Rs. lakhs)	1	2	3	4	5
Sales(Rs. lakhs)	10	20	30	50	40

(i) Find out two Regression Equations.

(ii) Estimate the likely sales when advertising expenditure is Rs. 7 lakhs.

(iii) Calculate the correlation between Advertising Expenditure and Sales.

Destination

			D ₁	D ₂	D ₃	Supply	20. Obtain the
Initial Basic Solution and		01	2	7	4	5	Feasible cost of a
	Origin	O_2	3	3	1	8	
		O ₃	5	4	7	7	
		O4	1	6	2	14	
		Demand	7	9	18	34	

Transportation Problem by Using

(i) North-West Corner Rule, (ii) Least Cost method and (iii) Vogel's Approximation Method.

21. Find the seasonal variations by the Link Relative Method to the following data

	YEAR						
QUARTER	2006	2007	2008	2009	2010		
Spring	6.0	5.4	6.8	7.2	6.6		
Summer	6.5	7.9	6.5	5.8	7.3		
Autumn	7.8	8.4	9.3	7.5	8.0		
Winter	8.7	7.3	6.4	8.5	7.1		

22. (i) Calculate Karl Pearson's Coefficient of Skewness:

Χ	1	2	3	4	5	6	7
f	3	6	8	17	14	10	4

(ii) Find out Mean Deviation and Standard Deviation from the following data:

X	5	15	25	35	45	55	65
f	8	12	10	8	3	2	7
